

FOR QUERIES AND CONSULTANCY, PLEASE CONTACT

salesdevprocess@jindalstainless.com

High Performance

Extremely Corrosion Resistant

Reliable for **Continuous Operations**

Lower Lead Time & Indigenous

Lower Lifecycle Cost

Meets Global Standards

HOT ROLL BONDED **CLAD PLATES**

DUAL STRENGTH. SINGULAR PERFORMANCE.

Hot Roll Bonded Clad Plates are advanced bimetallic composites engineered through a high-temperature and high-pressure roll bonding process. This metallurgical fusion forms a permanent, inseparable bond between two distinct metal layers-offering the combined advantages of both in a single, high-performance plate.

The structure comprises:

- **>** A thin layer of corrosion-resistant alloy Provides exceptional protection against aggressive chemical environments, ensuring extended service life in demanding applications
- **>** A base of high-strength carbon or low-alloy steel Delivers robust structural integrity and mechanical properties at a

This intelligent material design ensures optimum utilization of each metal's properties, where they matter most, making clad plates the preferred choice across critical industries that demand performance, durability, and economy.

Heat Exchanger

Coke Drum

HOT ROLL BONDING PROCESS

Our production equipment is highly automated and provides precise tolerances concerning dimensions, flatness, and surface quality & properties.

CORROSION RESISTANT ALLOYS FOR UNPARALLELED STAINLESS SECURITY

AVAILABLE GRADES

Thickness (mm)	Width (mm)	Length (mm)
8.0 - 20.0	1000 - 1200	Up to 8000

Minimum thickness of cladding alloy is 2.0 mm.

Tolerances as per ASTM A264, A265.

Contact our JSL representative for any customized requirements.

TYPICAL BACKING STEEL

- > IS 2062: E250 to E450
- > EN 10025: S235 to S450
- > ASTM A36, A283/283/285, A588
- > ASTM A516: Grades 55 (380), 60 (410), 65 (450), 70 (485)
- > API 5L Grade B, API 5L X-42/X-46/X-52/X-56/X-60/X-65/X-70

TYPICAL FIELDS OF APPLICATIONS

RENEWABLE

PENSTOCK PIPES

RADIAL & VERTICAL GATES

FLUE STACK

HEAT EXCHANGER

FLUE GAS DESULPHURISATION

VESSELS

CLAD PIPELINES

COKE DRUMS

HEAT EXCHANGER

PROCESS COLUMNS, VESSELS PIPINGS

CHEMICALS & PHARMACEUTICAL

POWER

TESTING & INSPECTION

MULTIPLE CHECKS FOR ULTRA DURABILITY

Testing and inspection of Clad Plates are performed in accordance with the specifications of ASTM A264 and A265.

> Tensile Test:

The tensile properties shall be determined by a tension test of the composite plate or base plate for evaluation of strength of material.

> Bend Test:

Bend tests with the cladding metal outside indicate the strength of the bond.

> Shear Strength:

The ASTM specification requires minimum shear strength of 140 MPa.

Ultrasonic Test:

Ultrasonic inspection is performed as per ASTM A264/A265

> Corrosion Test:

ASTM A262 Practice E for Stainless steel cladding material ASTM G48 method A for nickel alloy.

Any other type of testing as desired by the customer can be carried out based on mutual agreement.

